В условиях рыночной экономики степень неопределенности экономического поведения субъектов рынка достаточно высока[13]. В связи с этим большое практическое значение приобретают методы перспективного анализа, когда нужно принимать управленческие решения, оценивая возможные ситуации и делая выбор из нескольких альтернативных вариантов[14].
Теоретически существует четыре типа ситуаций, в которых необходимо проводить анализ и принимать управленческие решения, в том числе и на уровне предприятия: в условиях определенности, риска, неопределенности, конфликта. Рассмотрим каждый из этих случаев .
1. Анализ и принятие управленческих решений в условиях определенности.
Это самый простой случай: известно количество возможных ситуаций (вариантов) и их исходы. Нужно выбрать один из возможных вариантов . Степень сложности процедуры выбора в данном случае определяется лишь количеством альтернативных вариантов . Рассмотрим две возможные ситуации :
а) Имеется два возможных варианта: n=2.
В данном случае аналитик должен выбрать (или рекомендовать к выбору) один из двух возможных вариантов[15]. Последовательность действий здесь следующая:
· определяется критерий, по которому будет делаться выбор;
· методом “прямого счета” исчисляются значения критерия для сравниваемых вариантов;
· вариант с лучшим значением критерия рекомендуется к отбору.
Возможны различные методы решения этой задачи. Как правило, они подразделяются на две группы:
Методы, основанные на дисконтированных оценках;
Методы, основанные на учетных оценках.
Первая группа методов основывается на следующей идее. Денежные доходы, поступающие на предприятие в различные моменты времени, не должны суммироваться непосредственно; можно суммировать лишь элементы приведенного потока. Если обозначить F1,F2 , ,Fn - прогнозируемый денежный поток по годам, то i-й элемент приведенного денежного потока Рi рассчитывается по формуле:
Pi = Fi / ( 1+ r ) i
где r- коэффициент дисконтирования.
Назначение коэффициента дисконтирования состоит во временной упорядоченности будущих денежных поступлений (доходов) и приведении их к текущему моменту времени. Экономический смысл этого представления в следующем : значимость прогнозируемой величины денежных поступлений через i лет ( Fi ) с позиции текущего момента будет меньше или равна Pi . Это означает так же , что для инвестора сумма Pi в данный момент времени и сумма Fi через i лет одинаковы по своей ценности . Используя эту формулу , можно приводить в сопоставимый вид оценку будущих доходов , ожидаемых к поступлению в течение ряда лет. В этом случае коэффициент дисконтирования численно равен процентной ставке , устанавливаемой инвестором , т.е. тому относительному размеру дохода , который инвестор хочет или может получить на инвестируемый им капитал .
Итак, последовательность действий аналитика такова (расчеты выполняются для каждого альтернативного варианта):
* рассчитывается величина требуемых инвестиций (экспертная оценка) , IC;
* оценивается прибыль (денежные поступления) по годам Fi;
* устанавливается значение коэффициента дисконтирования , r;
* определяются элементы приведенного потока , Pi;
* рассчитывается чистый приведенный эффект (NPV) по формуле:
NPV= E Pi - IC
· сравниваются значения NPV ;
· предпочтение отдается тому варианту, который имеет больший NPV (отрицательное значение NPV свидетельствует об экономической нецелесообразности данного варианта).
Вторая группа методов продолжает использование в расчетах прогнозных значений F . Один из самых простых методов этой группы - расчет срока окупаемости инвестиции. Последовательность действий аналитика в этом случае такова :
* рассчитывается величина требуемых инвестиций , IC ;
* оценивается прибыль ( денежные поступления ) по годам , Fi ;
* выбирается тот вариант, кумулятивная прибыль по которому за меньшее число лет окупит сделанные инвестиции.
б) Число альтернативных вариантов больше двух .
n > 2
Процедурная сторона анализа существенно усложняется из-за множественности вариантов, техника “ прямого счета “ в этом случае практически не применима. Наиболее удобный вычислительный аппарат - методы оптимального программирования ( в данном случае этот термин означает “ планирование ”. Этих методов много ( линейное , нелинейное, динамическое и пр. ), но на практике в экономических исследованиях относительную известность получило лишь линейное программирование. В частности рассмотрим транспортную задачу, как пример выбора оптимального варианта из набора альтернативных. Суть задачи состоит в следующем .