Разделы


Анализ и принятие управленческих решений.

Имеется n пунктов производства некоторой продукции (а1,а2, .,аn) и k пунктов ее потребления (b1,b2, ,bk), где ai - объем выпуска продукции i - го пункта производства , bj - объем потребления j - го пункта потребления. Рассматривается наиболее простая, так называемая “закрытая задача ”, когда суммарные объемы производства и потребления равны. Пусть cij - затраты на перевозку единицы продукции . Требуется найти наиболее рациональную схему прикрепления поставщиков к потребителям , минимизирующую суммарные затраты по транспортировке продукции . Очевидно , что число альтернативных вариантов здесь может быть очень большим , что исключает применение метода “ прямого счета[16] ” . Итак необходимо решить следующую задачу :

E E Cg Xg -> min

E Xg = bj E Xg = bj Xg >= 0

Известны различные способы решения этой задачи -распределительный метод потенциалов и др. Как правило, для расчетов применяется ЭВМ.

При проведении анализа в условиях определенности могут успешно применяться методы машинной имитации, предполагающие множественные расчеты на ЭВМ[17]. В этом случае строится имитационная модель объекта или процесса (компьютерная программа), содержащая b-е число факторов и переменных, значения которых в разных комбинациях подвергается варьированию. Таким образом, машинная имитация - это эксперимент, но не в реальных, а в искусственных условиях. По результатам этого эксперимента отбирается один или несколько вариантов , являющихся базовыми для принятия окончательного решения на основе дополнительных формальных и неформальных критериев .

2 . Анализ и принятие управленческих решений в условиях риска.

Эта ситуация встречается на практике наиболее часто. Здесь пользуются вероятностным подходом , предполагающим прогнозирование возможных исходов и присвоение им вероятностей[18] . При этом пользуются:

а) известными, типовыми ситуациями ( типа - вероятность появления герба при бросании монеты равна 0.5 ) ;

б) предыдущими распределениями вероятностей ( например, из выборочных обследований или статистики предшествующих периодов известна вероятность появления бракованной детали ) ;

в) субъективными оценками, сделанными аналитиком самостоятельно либо с привлечением группы экспертов.

Последовательность действий аналитика в этом случае такова:

· прогнозируются возможные исходы Ak , k = 1 ,2 , ., n;

· каждому исходу присваивается соответствующая вероятность pk , причем

· Е рк = 1

· выбирается критерий (например максимизация математического ожидания прибыли ) ;

· выбирается вариант, удовлетворяющий выбранному критерию.

Пример: имеются два объекта инвестирования с одинаковой прогнозной суммой требуемых капитальных вложений. Величина планируемого дохода в каждом случае не определенна и приведена в виде распределения вероятностей :

Проект А

Проект В

Прибыль

Вероятность

Прибыль

Вероятность

3000

0. 10

2000

0 . 10

3500

0 . 20

3000

0 . 20

4000

0 . 40

4000

0 . 35

4500

0 . 20

5000

0 . 25

5000

0 . 10

8000

0 . 10

Тогда математическое ожидание дохода для рассматриваемых проектов будет соответственно равно:

У (Да) = 0 . 10 * 3000 + + 0 . 10 * 5000 = 4000

У ( Дб ) = 0 . 10 * 2000 + .+ 0 . 10 * 8000 = 4250

Таким образом, проект Б более предпочтителен. Следует , правда , отметить , что этот проект является и относительно более рискованным , поскольку имеет большую вариацию по сравнению с проектом А ( размах вариации проекта А - 2000 , проекта Б - 6000 ) .

Перейти на страницу: 1 2 3